欧拉角与四元数

1.欧拉角

欧拉角是表达旋转的最简单的一种方式,形式上它是一个三维向量,其值分别代表物体绕坐标系三个轴(x,y,z轴)的旋转角度。
    
参考坐标系:


第一张:pitch,航空领域表示飞机的俯仰角。绕X轴转动结果;
第二张:yaw,表示飞机的偏航角,绕Y轴转动结果;
第三张:roll,表示飞机的翻滚角,绕Z轴转动结果。

2.四元数

四元数是由爱尔兰数学家威廉•卢云•哈密顿在1843年发现的数学概念,在图形学中有重要的应用。在3D程序中,通常用四元数来计算3D物体的旋转角度,与矩阵相比,四元数更加高效,占用的储存空间更小,此外也更便于插值。 可以把四元数看做一个标量和一个3D向量的组合。实部w表示标量,虚部表示向量标记为V或三个单独的分量(x,y,z),则四元数可以记为[ w, V]或[ w,(x,y,z)]。正规化四元数可以表示为:

在三维中,可以用四元数表示绕着某个轴的旋转,如下公式所示:

α表示旋转的角度,cos(βx), cos(βy) 和cos(βz)表示定位旋转轴的方向余弦
根据欧拉旋转定理,任何两个坐标系的相对定向,可以由一组四个数字来设定;其中三个数字是方向余弦,用来设定特征矢量(固定轴);第四个数字是绕着固定轴旋转的角值。这样四个数字的一组称为四元数。上面这段话阐述了四元数的原理:三维空间内所有的旋转都可以用四个数来表示。在通过四元数方法来计算旋转,已经替代了方向余弦方法,这是因为它能减少所需的工作,和它能减小舍入误差。在电脑图形学里,四元数与四元数之间,简易执行插值的能力是很有价值的。
相关推荐
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页