自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

沈春旭的博客

优秀是一种习惯

  • 博客(31)
  • 资源 (9)
  • 论坛 (3)
  • 问答 (1)
  • 收藏
  • 关注

原创 SVM熟练到精通5:MATLAB实例

1.源代码clc;clear all;close all;load fisheriris;%matlab自带分类数据集fisheriris,来源于http://archive.ics.uci.edu/ml/ 中的risi数据,%其数据类别分为3类,setosa,versicolor,virginica.每类植物有50个样本,共150个。%每个样本有4个属性,分别为花萼长,花

2016-12-26 11:57:41 7085

原创 SVM熟练到精通4:偏离点与松弛变量

文章引自pluskid于2010年发表于“Machine Learning”板块,本文仅做编辑。1.回顾在最开始讨论支持向量机的时候,我们就假定,数据是线性可分的,亦即我们可以找到一个可行的超平面将数据完全分开。后来为了处理非线性数据,使用 Kernel 方法对原来的线性 SVM 进行了推广,使得非线性的的情况也能处理。虽然通过映射 ϕ(⋅) 将原始数据映射到高维空间之

2016-12-26 10:33:18 2488 2

原创 SVM熟练到精通3:核函数与非线性分类

文章引自pluskid于2010年发表于“Machine Learning”板块,本文仅做编辑。1.回顾前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的。不过,由于是线性方法,所以对非线性的数据就没有办法处理了。例如图中的两类数据,分别分布为两个圆圈的形状,不论是任何高级的分类器,只要它是线性的,就没法处理,SV

2016-12-26 10:19:27 8994

原创 SVM熟练到精通2:SVM目标函数的dual优化推导

文章引自pluskid于2010年发表于“Machine Learning”板块,本文仅做编辑。1.SVM的数学原理上一次介绍支持向量机,结果说到 Maximum Margin Classifier ,到最后都没有说“支持向量”到底是什么东西。不妨回忆一下上次最后一张图:可以看到两个支撑着中间的 gap 的超平面,它们到中间的 s

2016-12-26 09:37:24 2687

原创 SVM熟练到精通1:初识SVM

文章引自pluskid于2010年发表于“Machine Learning”板块,本文仅做编辑。1.啥是支持向量机支持向量机即 Support Vector Machine,简称 SVM 。我最开始听说这头机器的名号的时候,一种神秘感就油然而生,似乎把 Support 这么一个具体的动作和 Vector 这么一个抽象的概念拼到一起,然后再做成一个 Machine ,一听就很玄了!

2016-12-26 00:28:05 1322

原创 短时傅里叶分析:spectrogram函数

1.spectrogram参数简介功能:使用短时傅里叶变换得到信号的频谱图。语法:[S,F,T,P]=spectrogram(x,window,noverlap,nfft,fs)[S,F,T,P]=spectrogram(x,window,noverlap,F,fs)说明:当使用时无输出参数,会自动绘制频谱图;有输出参数,则会返回输入信号的短时傅里叶变换。当然也可以从函数的返回

2016-12-25 11:19:34 54064 7

原创 仔细想了想支持向量机(Support Vector Mechine)

1. SVM是要解决什么问题?之前,冲上来就看SVM的应用,简介,最优化计算方法等。从没认真想过SVM要解决什么问题。下面一幅是常用的图,来解释SVM的需求。SVM最基本的应用是分类。 求解最优的分类面,然后用于分类。最优分类面的定义: 对于SVM,存在一个分类面,两个点集到此平面的最小距离最大,两个点集中的边缘点到此平面的距离最大。从直观上来看,下图左边的,肯定不是最

2016-12-24 11:42:49 729

原创 多功能监护系统开发与设计

2016-12-19 18:29:28 1028

原创 matlab 读取含有文本的txt

1.没有文件头 列规整4.09+4.10,4.09+4.104.09+4.10,4.09+4.104.09+4.09,4.09+4.094.09+4.09,4.09+4.094.09+4.09,4.09+4.104.09+4.09,4.09+4.094.09+4.09,4.09+4.094.09+4.10,4.09+4.104.09+4.10,4.09+

2016-12-19 00:15:11 16461

原创 串行通信的波特率高速和低速区别

注意,这里说的高速、低速不是通常说的速度快就是高速,速度慢就是低速。这里所谓的高速、低速,指的是同一个波特率因子下的波特率的快慢。得看一下式子:高速:波特率=fosc/16*(x+1)  (fosc代表外部晶振)低速:波特率=fosc/64*(x+1) 从上面的公式可以看到,对同一个X,显然用“fosc/16*(x+1) ”计算得到的波特率比用“fosc/64*(x+1)

2016-12-18 20:04:16 4580

原创 向量和矩阵梯度:标量Hesse矩阵和矢量Jacobian矩阵

2016-12-15 11:33:52 1705

原创 独立成分分析ICA系列4:ICA的最优估计方法综述

ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。1.最大似然估计算法

2016-12-15 11:18:38 2885

原创 独立成分分析ICA系列5:信息极大化的 ICA 算法

1.ICA基本理论再综述在实际应用中,可以通过传感器得到一系列观测信号,这些观测信号是由未知源信号经过某种混合系统的输出,如在移动通信中,源信号经过发射机天线发出后,在无线信道中经过不确定的混合和干扰,以至于到达接收机的信号是一个多径、携噪的混合信号,而从混合信号中分离出发射端的源信号将大大改善通信质量,因此类似的问题都可以用 ICA的方法来解决。假设由 N 个源信号 构成一个列向

2016-12-15 10:55:31 4869

原创 独立成分分析ICA系列3:直观解释与理解

服从均匀分布的独立成分sl和s2的联合分布.其中横坐标表示s1,纵坐标表示s2为了进一步解释ICA的统计模型,考虑服从下列均匀密度分布的两个互相独立的随机变量:这个联合分布是在一个方形上均匀分布的,其中样本点是从这个分布随机取样得到的。现在如果用混合矩阵:将源信号s1和s2混合,就得到混合信号xI和x2,他们的联合分布见下图.从上图可

2016-12-15 09:16:34 4077

原创 独立成分分析ICA系列2:概念、应用和估计原理.

1.概念独立成分分析是从多元(多维)统计数据中寻找潜在因子或成分的一种方法.ICA与其它的方法重要的区别在于,它寻找满足统计独立和非高斯的成分。这里我们简要介绍ICA的基本概念、应用和估计原理。1.1 多元数据的线性表示统计数据处理及相关领域中的一个重要和需要长期研究的问题就是,寻找多元数据一个恰当的表示,使得人们可以获得给定数据的本质特征或者使得数据的结构

2016-12-14 17:24:16 20964 3

原创 独立成分分析ICA系列1:意义

1.前言独立成分分析思想和方法最早源于上世纪八十年代几个法国学者的研究工作,尽管当时他们并没有命名其为ICP;在1986年举行的神经网络计算会议上,法国学者Heraull和Jutten提出了一个基于神经网络模型和Hebb学习准则的方法,来解决盲源分离问题,简称BSS.混合信号是由相互统计独立的源信号混合而成的。这篇文章提出的算法可以解决具有两个源信号混合的盲源分离问题。他们的工作开

2016-12-14 11:18:47 9034

原创 时光让我们慢慢老去

Time isToo rigorous forthose who dawdle away time,Too mild for thosewho cherish every day,Too bitter forthose who abandon life,Too blessed forthose who create values.But for those whopursue

2016-12-13 11:30:36 954 1

原创 C++返回字符串函数的几种实现方法

C++返回字符串函数有四种方式:1。使用堆空间,返回申请的堆地址,注意释放2。函数参数传递指针,返回该指针3。返回函数内定义的静态变量(共享)4。返回全局变量1.使用堆空间,返回申请的堆地址,注意释放其实就是要返回一个有效的指针,尾部变量退出后就无效了。 使用分配的内存,地址是有效 char

2016-12-12 23:43:37 20496 1

原创 主成分分析(PCA)深入剖析+Matlab模拟

1.降维引发的思考对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降维的操作可以理解为一种映射关系,例如函数z=f(x,y),即由原来的二维转换成了一维。处理降维的技术有很多种,如前面的SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等等。2.PCA的主调与意图

2016-12-10 09:27:28 3151 1

原创 独立成分分析 ( ICA ) 与主成分分析 ( PCA )再解析

ICA认为观测信号是若干个统计独立的分量的线性组合,ICA要做的是一个解混过程。而PCA是一个信息提取的过程,依据贡献度大小,将原始数据降维,现已成为ICA将数据标准化的预处理步骤。这里蕴含着独立必不相关,因而先做一个PCA。PCA是协方差矩阵为对角阵,因而数据是不相关的。1.感受一PCA和ICA的用途完全不同。如果只在意数据的能量或方差、假设噪声或不感兴趣的信号都比较微弱,那么用PC

2016-12-10 09:01:35 9878 3

原创 独立成分分析 ( ICA ) 与主成分分析 ( PCA ) 的区别

1.前言参考资料:https://www.zhihu.com/question/28845451书上写的是:1. 主成分分析假设源信号间彼此非相关,独立成分分析假设源信号间彼此独立。2. 主成分分析认为主元之间彼此正交,样本呈高斯分布;独立成分分析则不要求样本呈高斯分布。在利用最大化信息熵的方法进行独立成分分析的时候,需要为源信号假定一个概率密度分布函数g',进而找出使得g(Y)=g...

2016-12-10 00:21:06 24875 1

原创 约翰霍姆金斯大学_the I-STAR Lab

研究方向1.1 成像物理Among the most exciting areas of digital x-ray imaging physics over the last decade has been the development of cone-beam CT (CBCT) systems in a broad scope of applications ranging

2016-12-09 22:57:15 884

原创 能量谱与功率谱

1.能量谱与功率谱能量谱与功率谱分别是针对能量有限的信号和功率有限的信号。在进行信号的谱分析的时候一定更要看准这是一个能量信号还是一个功率信号,应用不同的谱进行分析会使问题的解决思路更加明确。1.1 能量谱对于周期功率信号我们使用傅里叶级数的方法进行分析。指数形式的傅里叶级数系数的求解用下面的公式。对于非周期的能量信号,我们主要使用傅里叶分析方法进行分析。

2016-12-08 23:22:28 11348 3

原创 【清华牛人】Stanford, Caltech双料博士

其实到2月2日拿到第一个,也最心仪的offer时,我的申请季就算是结束了。之后参加campusvisit,选学校,去向尘埃落定。申请总结拖拖拉拉到现在才写完,终于为我的申请画一个句号。整体来说对申请结果挺满意,最后选择去Stanford也几乎没什么悬念。因为Caltech合适的老板太少。今年物理整体申请结果都不错,大概是大小年的缘故。我自己的硬件条件是:GPA: 90.6/100, ran

2016-12-07 10:15:08 3141

原创 3DCT 各向同性

各向同性”也叫“立方体像素”,是指像素的长宽高都相等的情况。在螺旋CT没有出现之前,谈到“像素”一般仅仅指像素的长宽值,而忽略了像素的高度。但是,正如我们常做的比喻:“CT断面就象一片片的面包”,而“面包片”实际上是有厚度的,所以“像素”的确切说法应该是“像素体”,具有长宽高。螺旋CT出现以后,可以进行体积扫描并做三维重建了,此时“像素体”的概念就很重要了。像素体的长宽取决于探测器

2016-12-06 15:08:37 2115

原创 为什么我们批评C++?又爱又恨的垃圾回收机制

1.前言Java的爱好者们经常批评C++中没有提供与Java类似的垃圾回收(Gabage Collector)机制(这很正常,正如C++的爱好者有时也攻击Java没有这个没有那个,或者这个不行那个不够好)。垃圾回收导致C++中对动态存储的管理称为程序员的噩梦,不是吗?经常听到的是内存遗失(memory leak)和非法指针存取,这一定令你很头疼,而且你又不能抛弃指针带来的灵活性。

2016-12-06 13:49:12 1061

原创 研究生第一篇学术论文常犯问题总结【喻海良箴言】

在过去几个月里面,我帮助不少研究生修改过学术论文。其中有一些人的论文的研究内容和结果非常好,但是,在他们论文撰写过程中存在不少问题。现在回国了,我想应该是时候把这些问题总结一下,希望将来研究生们能够避免这些问题,提高科研论文写作效率。问题(1):摘要与结论几乎重合。    这一条是我见过研究生论文中最常出现的事情,很多情况下,他们论文中摘要部分与结论部分重复率超过70%。当然,我自

2016-12-05 21:20:58 1962

原创 华盛顿大学-Lihong V.Wang

Research DirectionsPhoto-acoustic tomography (PAT)Thermo-acoustic tomography (TAT)Ultrasound-modulated (acousto-) optical tomography (UOT)Mueller optical-coherence tomograp

2016-12-05 09:43:43 2829

原创 华盛顿大学-Quing Zhu, PhD

PROFESSORzhu.q@wustl.eduOffice: Whitaker 300 DQuing Zhu joined Washington University in St. Louis as a professor of the Department of Biomedical Engineering in July 2016. Previously, she

2016-12-05 09:30:29 1301

原创 埃默里大学-放射与影像科学系 - Dr. Baowei Fei

Baowei Fei, PhD, EngDAssociate Professor of Radiology Georgia Cancer Coalition Distinguished ScholarDirector, Quantitative BioImaging Laboratory (QBIL)Emory University School of Medicine G

2016-12-04 13:06:28 1274

原创 IIR+全通滤波器级联实现系统零相位相移_matlab仿真

1.前言前面详细的介绍了如何通过优化的思想逆向设计符合要求的全通相位平衡系统!实际上,线性相位的要求要比零相位相移的要求苛刻的多。晚上和好友解释了一下如何利用优化思想实现线性相位,好友感觉很难实现零相移。为此,一步一步又做了一次仿真实验,并进行记录。说白了,y=0就是y=kx的一个特例!明白了这一点,还是建议大家看上一排帖子,平衡后达到线性相位更重要!2.一步一步实现零

2016-12-01 00:05:32 7687 4

用于特征图/卷积核/响应图可视化的网络

这个是为博客‘非黑盒矣-卷积神经网络的可视化’匹配的已经训练好的网络。 通过该网络和博文中阐述的代码,从而复现实验。

2018-12-18

串口通讯代码

利用C#开发出的串口通讯代码,可以实现对下位机的控制,软件界面简介

2014-06-09

Python+OpenCV实现Selective Search算法

The code is a Python tutorial for Selective Search using OpenCV 3.3.

2018-10-29

softmax regression测试代码

代码实现了softmax regression。 包含训练代码,测试代码和训练数据。

2018-10-15

logistic逻辑回归配套资源

logistic逻辑回归的配套资源。 里面包括训练代码、测试代码。其中也包括了训练集、测试集。

2018-10-14

英伟达深度神经网络加速库 与 matconvnet配套使用 (v5.1)

CuDNN是专门针对Deep Learning框架设计的一套GPU计算加速方案,目前支持的DL库包括Caffe,ConvNet, Torch7等。

2018-07-11

21个项目玩转深度学习

《21 个项目玩转深度学习——基于TensorFlow 的实践详解》以实践为导向,深入介绍了深度学习技术和TensorFlow 框架编程内容。 通过本书,读者可以训练自己的图像识别模型、进行目标检测和人脸识别、完成一个风格迁移应用,还可以使用神经网络生成图像和文本,进行时间序列预测、搭建机器翻译引擎,训练机器玩游戏。全书共包含21 个项目,分为深度卷积网络、RNN网络、深度强化学习三部分。读者可以在自己动手实践的过程中找到学习的乐趣,了解算法和编程框架的细节,让学习深度学习算法和TensorFlow 的过程变得轻松和高效。本书代码基于TensorFlow 1.4 及以上版本,并介绍了TensorFlow 中的一些新特性。 本书适合有一定机器学习基础的学生、研究者或从业者阅读,尤其是希望深入研究TensorFlow 和深度学习算法的数据工程师,也适合对人工智能、深度学习感兴趣的在校学生,以及希望进入大数据应用的研究者。

2018-06-15

数学之美完整版

很好的一本书 是清华师兄的大作,将通信领域和语音处理领域应用的数学深入简出的道来

2016-11-10

2-D and 3-D Image registration 图像配准

1.计算机影像学、手术导航领域专业书籍 2.国外具有影响力的图像配准参考书籍 3.图书中包括2D-2D图像配准的方法与策略,并详细地论证了3D-2D医学图像配准的方法。对图像处理、模式识别领域具有重要参考意义。

2016-07-27

沈子恒的留言板

发表于 2020-01-02 最后回复 2020-01-02

C++ 头文件中定义类A,并声明APrivate. 然后在相应的源文件中对APrivate进行定义,请问有什么意义?

发表于 2017-09-25 最后回复 2019-04-30

应设置加速审核功能

发表于 2018-09-18 最后回复 2018-09-18

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除